
Co/algebraic essentials

and their impact on languages and compilers

Peter Padawitz
TU Dortmund

February 3, 2011

1 of 26

�
�

�

Road map

1 Constructor and destructor signatures, Reg and Accept 3

2 Signatures induce functors with fixpoints 11

3 Invariants and induction, congruences and coinduction 15

4 Context-free grammars are constructor signatures 17

5 Derivative parser for regular expressions 20

6 Context-free grammars are systems of Reg-equations 22

7 Extending the derivative parser to parsers for CFGs 24

2 of 26

�
�

�

Constructor and destructor signatures, Reg and Accept

Let S be a set of sorts. An S-sorted set A is a family {As | s ∈ S} of sets.

An S-sorted function f : A→ B is a family {fs : As → Bs | s ∈ S} of functions.

Given BS ⊆ S and a BS-sorted set BA, SetSBA denotes the category whose objects are
pairs (A, f : A|BS

∼→ BA) consisting of an S-sorted set A and a BS-sorted bijection f
and whose morphisms from (A, f) to (B, g) are S-sorted functions h : A→ B such that
for all s ∈ BS, gs ◦ hs = fs.

For all s1, . . . , sn, s, s
′ ∈ S,

A1 =def {∗},
As1×···×sn =def As1 × . . .× Asn =def {(a1, . . . , an) | ai ∈ Asi, 1 ≤ i ≤ n},
As1+···+sn =def As1 + · · · + Asn =def {(a, i) | a ∈ Asi, 1 ≤ i ≤ n},

Ass
′ =def (As′ → As).

3 of 26

The set of signatures is defined inductively as follows:

• Σ = (S, F) is a signature if S is a set of sorts and F is an S∗ × S+-sorted set of
function symbols.
• Σ = (S, F,BΣ) is a signature if BΣ is a signature, called the base signature of Σ,
and (S, F) is a signature such that S and F contain the sorts resp. function symbols
of the base signature.

f : v → w ∈ F \BF is a constructor if w ∈ S \BS. f is a destructor if v ∈ S \BS.

Σ is a constructor signature if F \ BF consists of constructors. S and F implicity
include sum sorts s1+· · ·+sn and injections ιi : si → s1+· · ·+sn for all s1, . . . , sn ∈ S.

Σ is a destructor signature if F \BF consists of destructors. S and F implicity include
product sorts s1 × · · · × sn, projections πi : s1 × · · · × sn → si, power sorts ss

′ and
applications $a : ss

′ → s for all s1, . . . , sn, s ∈ S, s′ ∈ BS, a ∈ BAs′ and BS-sorted
sets BA.

4 of 26

+ A signature for regular expressions

Reg = (S, F,BΣ)

= ({reg, symbol},
{∅, ε : ε→ reg,

_ : symbol→ reg,

_ | _ : reg reg → reg,

_ · _ : reg reg → reg,

star : reg → reg},
({symbol}, ∅))

+ A signature for acceptors

Accept = (S, F,BΣ)

= ({state, symbol, bool},
{δ : state→ statesymbol,

final : state → bool},
({symbol, bool}, ∅))

5 of 26

Let Σ = (S, F,BΣ) be a signature, X be an S-sorted set of variables and Y be an
S-sorted set of covariables.

The S-sorted set TΣ(X) of Σ-terms over X is inductively defined as follows:

• For all s ∈ S, Xs ⊆ TΣ(X)s.
• For all f : s1 . . . sn → s ∈ F and ti ∈ TΣ(X)si, 1 ≤ i ≤ n, f〈t1, . . . , tn〉 ∈ TΣ(X)s.

Given t ∈ TΣ(X), var(t) denotes the set of variables occurring in t.

The S-sorted set coTΣ(Y) of Σ-coterms over X is inductively defined as follows:

• For all s ∈ S, Ys ⊆ coTΣ(Y)s.
• For all f : s→ s1 . . . sn ∈ F and ti ∈ coTΣ(Y)si, 1 ≤ i ≤ n, [t1, . . . , tn]f ∈ coTΣ(Y)s.

Given t ∈ coTΣ(Y), cov(t) denotes the set of covariables occurring in t.

A term resp. coterm t over N∗ such that all function symbols of t belong to F \BF and
for all x ∈ var(t) ∪ cov(t), sort(x) ∈ BS and t(x) = x, is called a Σ-generator resp.
Σ-observer.

6 of 26

xf6 xx

f5 f6 f8

f1
f3f2

x z

y

y

ε

0 1

10 11

00

01

x

02

010 011 012 100 110 111

0110

The tree representing the term f1〈f2〈x, f5〈x, f6〈y〉, x〉, z〉, f3〈f6〈y〉, f8〈x, x〉〉〉
or the coterm [[[x, [x, [y]f6, x]f5, z]f2, [[y]f6, [x, x]f8]f3]f1

+ The Reg-terms over Xsymbol are the regular expressions over Xsymbol.

+ For each Accept-observer t there are a1, . . . , an ∈ Z =def BAsymbol such that

t = parse(_, a1 . . . an) =def final(δ∗(_, a1 . . . an))

=def final(δ(. . . (δ(δ(_, a1), a2), . . . , an)) =def [[. . . [[[x]final]δ$an] . . .]δ$a2]δ$a1 .

Hence t is representable by a1 . . . an ∈ Z∗.

7 of 26

A Σ-algebra A consists of an S-sorted set, the carrier of A, also denoted by A, and

• for each f : w → s1 . . . sn ∈ F , a function fA : Aw → As1+···+sn,

such that

• for all injections ιi : si → s1 + · · · + sn, a ∈ Asi, ι
A
i (a) = (a, i),

• for all projections πi : s1 × · · · × sn → si and a ∈ As1×···×sn, π
A
i (a) = ai,

• for all applications $a : ss
′ → s and f : As′ → As, ($a)A(f) = f (a).

+ The regular expressions over BAsymbol form the Reg-algebra TReg(BA).

+ The languages over BAsymbol form the Reg-algebra Lang(BA).

+ Let BAbool = 2. Lang(BA) is also an Accept-algebra: For all L ⊆ Z∗ and a ∈ Z,

Lang(BA)state =def P(Z∗),

δLang(BA)(L, a) =def {w ∈ Z∗ | aw ∈ L},
finalLang(BA)(L) =def (ε ∈ L).

The Accept-subalgebra

〈L〉 =def {(δ∗)Lang(BA)(L,w) | w ∈ Z∗}

is a minimal acceptor of L.

8 of 26

Let A and B be Σ-algebras, h : A→ B be an S-sorted function and f ∈ F .

h is a Σ-homomorphism if for all f ∈ F ,

h ◦ fA = fB ◦ h.

Let BA be a BΣ-algebra.

A Σ↓BA-algebra (A, g) is a pair consisting of a a Σ-algebra A and a BΣ-isomorphism
g : A|BΣ → BA.

Given Σ↓BA-algebras (A, f) and (B, g), a Σ-homomorphism h : A → B is a Σ↓BA-
homomorphism if g ◦ h|Σ = f .

AlgΣ↓BA denotes the category of Σ↓BA-algebras and Σ↓BA-homomorphisms.

9 of 26

Term evaluation _A : TΣ(X)→ (AX → A) is inductively defined as follows:
Let g ∈ AX .

• For all x ∈ X , xA(g) = g(x).
• For all f : s1 . . . sn → s ∈ F \BF and ti ∈ TΣ(X)si, 1 ≤ i ≤ n,

(f〈t1, . . . , tn〉)A(g) = fA(tA1 (g), . . . , tAn (g)).

+ For all regular expressions R ∈ TReg(BA), RLang(BA)(idBA) is the language of R.

Coterm evaluation _A : coTΣ(Y)→ (A→ A · Y) is inductively defined as follows:

• For all s ∈ S, x ∈ Ys and a ∈ As, xA(a) = (a, x).
• For all f : s→ s1 . . . sn ∈ F \BF , ti ∈ coTΣ(X)si, 1 ≤ i ≤ n, and a ∈ As,

fA(a) = (b, i) ⇒ ([t1, . . . , tn]f)A(a) = tAi (b).

+ For all Accept-observers parse(_, a1 . . . an) and L ⊆ Z∗,

parse(_, a1 . . . an)Lang(BA)(L) = (a1 . . . an ∈ L).

10 of 26

�
�

�

Signatures induce functors with fixpoints

Let BS be the sorts of BΣ and BA be a BS-sorted set.

If Σ is a constructor signature, then Σ and BA induce the functor ΣBA : SetSBA → SetSBA:
For all A ∈ SetSBA and s ∈ S,

ΣBA(A)s =def

{ ∐
f :s1...sn→s∈F (As1 × . . .× Asn) if s ∈ S \BS,

As if s ∈ BS.

+ RegBA(A)reg =def 1 + 1 + BAsymbol + A2
reg + A2

reg + Areg.

If Σ is a destructor signature, then Σ and BA induce the functor ΣBA : SetSBA → SetSBA:
For all A ∈ SetSBA and s ∈ S,

ΣBA(A)s =def

{ ∏
f :s→s1...sn∈F (As1 + · · · + Asn) if s ∈ S \BS,

As if s ∈ BS.

+ AcceptBA(A)state =def A
BAsymbol
state × 2.

11 of 26

A ΣBA-algebra ΣBA(A)
α→ A is an S-sorted function and uniquely corresponds to a

Σ↓BA-algebra A: For all s ∈ S \BS and f : s1 . . . sn → s ∈ F \BF ,

ΣBA(A)s
αs = [fA]f :s1...sn→s∈F>As αs is the coproduct extension

of the interpretations in A

As1×···×sn

ιf

∧

fA = αs ◦ ιf

>

of all constructors f of Σ

Since ΣBA preserves colimits of increasing ω-chains, the category AlgΣBA of ΣBA-algebras
has an initial object ini : ΣBA(µΣBA)

∼→ µΣBA and thus a fixpoint of ΣBA.

For all s ∈ S \BS, µΣBA,s =
∐

t∈GenΣ,s
BAvar(t).

+ The Reg-algebra TReg(BA) of regular expressions over BAsymbol is initial in
AlgReg↓BA:

(µRegBA)reg =
∐

t∈GenReg,reg
BAvar(t) = TReg(BA).

12 of 26

A ΣBA-coalgebra A
α→ ΣBA(A) is an S-sorted function and uniquely corresponds to a

Σ↓BA-algebra A: For all s ∈ S \BS and f : s→ s1 . . . sn ∈ F \BF ,

As

αs = 〈fA〉f :s→s1...sn∈F>ΣBA(A)s αs is the product extension

of the interpretations in A

As1+···+sn

πf

∨
fA = πf ◦ αs

>
of all destructors f of Σ

Since ΣBA preserves limits of decreasing ω-chains, the category coAlgΣBA of ΣBA-algebras
has a final object fin : νΣBA

∼→ ΣBA(νΣBA) and thus a fixpoint of ΣBA.

For all s ∈ S \BS, νΣBA,s ⊆
∏

t∈ObsΣ,s
(BA× cov(t)).

+ Let BAbool = 2. The Accept-algebra Lang(BA) of languages over BAsymbol is final
in AlgAccept↓BA:

(νAcceptBA)state =
∏

t∈ObsAccept,state
(BABool × {x}) =

∏
t∈ObsAccept,state

BABool = 2BA∗symbol

= P(BA∗symbol) = Lang(BA)state.

13 of 26

Given (A, g) ∈ AlgΣ↓BA, the unique Σ↓BA-homomorphism foldA : µΣBA → A is defined
as follows: For all s ∈ S and t ∈ TΣ(BA)s,

foldAs (t) =

{
tA(idA) if s ∈ S \BS,
g−1(t) if s ∈ BS.

Given (A, g) ∈ AlgΣ↓BA, the unique Σ↓BA-homomorphism unfoldA : A → νΣBA is
defined as follows: For all s ∈ S and a ∈ As,

unfoldAs (a) =

{
(tA(a))t∈ObsΣ,s

if s ∈ S \BS,
g(a) if s ∈ BS.

14 of 26

�
�

�

Invariants and induction, congruences and coinduction

Let Σ = (S, F,BΣ) be a constructor signature and A be a Σ↓BA-algebra.

An S-sorted subset inv of A is a Σ-invariant or Σ-subalgebra of A if for all
f : w → s ∈ F \BF and a ∈ Aw,

a ∈ inv implies fA(a) ∈ inv,
and for all s ∈ BS, invs = As.

Let A = µΣBA and B ∈ AlgΣ↓BA. Since A is initial,

(1) A is the only Σ-invariant of A,
(2) image(foldB) is the least Σ-invariant of B.

By (1), induction is sound: Let R ⊆ A.

A ⊆ R ⇐⇒ inv ⊆ R for some Σ-invariant inv of A
⇐⇒ least Σ-invariant of A = ∩ {inv | inv is a Σ-invariant inv of A} ⊆ R

+ Since TReg(BA) = µRegBA, induction justifies the inductive definition of a function
on regular expressions.

15 of 26

Let Σ = (S, F,BΣ) be a destructor signature and A be a Σ↓BA-algebra.

An S-sorted binary relation ∼ is a Σ-congruence on A if for all f : s→ w ∈ F \ BF
and a, b ∈ As,

a ∼ b implies fA(a) ∼ fA(b),

and for all s ∈ BS, ∼s= ∆A,s.

Let A = νΣBA and B ∈ AlgΣ↓BA. Since A is final,

(1) ∆A is the only Σ-congruence on A,
(2) kernel(unfoldB) is the greatest Σ-congruence on B.

By (1), coinduction is sound: Let R ⊆ A× A.

R ⊆ ∆A ⇐⇒ R ⊆ ∼ for some Σ-congruence ∼ on A
⇐⇒ R ⊆ greatest Σ-congruence on A

= ∪ {∼ | ∼ is a Σ-congruence ∼ on A}

+ Since Lang(BA) = νAcceptBA, coinduction provides a method for proving that
two given languages agree with each other.

16 of 26

�
�

�

Context-free grammars are constructor signatures

A context-free grammar (CFG) G = (S,Z, P,BΣ, BG) consists of

• a signature BΣ = (BS,BF,BΣ′),
• a BΣ-Algebra BG,
• a finite set S of sorts (nonterminals) including a set BS,
• a set Z of terminals that includes the carriers of BG,
• a finite set P of rules (productions) of the form s → w with s ∈ S \ BS and
w ∈ (S ∪ Z \BG)∗.

The constructor signature
Σ(G) = (S, F,BΣ)

with

F = {fp : s1 . . . sn → s |
p = (s→ w0s1w1 . . . snwn) ∈ P,
w0, . . . , wn ∈ Z∗, s1, . . . , sn ∈ S}

}

is called the abstract syntax of G.

Σ(G)-terms are called syntax trees of G.

17 of 26

Word(G), the word algebra of G

For all s ∈ S,

Word(G)s =def

{
BGs if s ∈ BS,
Z∗ otherwise.

For all p = (s→ w0s1w1 . . . snwn) ∈ P with w0, . . . , wn ∈ Z∗ and s1, . . . , sn ∈ S,

f
Word(G)
p : Word(G)s1 × . . .×Word(G)sn → Word(G)s

(v1, . . . , vn) 7→ w0v1w1 . . . vnwn

The language L(G) of G is the image of TΣ(G) under foldWord(G): For all A ∈ S \BS,

L(G)s =def {foldWord(G)(t) | t ∈ TΣ(G),s}.

18 of 26

Z∗ \ L(G)>
inc

>Z∗

(1)

error messages
∨

>
inc

>M(TΣ(G))

parseG =

∨ M(foldTarget)
>M(Target)

compileTarget ,M
G

>

=

Z∗ <
foldWord

parseG
>

TΣ(G)

(2) η

∧

foldTarget

>Target

η

∧

(3)

SemS

foldSemS

∨

encode
>SemT

target interpreter

∨

compilerG = generic compiler for G
M = monad with unit η M determines error messages and the number of results
parseG = parser for G (1) = completeness (2) = correctness
foldTarget = syntax-tree compiler (3) = correctness
SemS = source language semantics SemT = target language semantics

19 of 26

�
�

�

Derivative parser for regular expressions

+ TReg(BA) is an Accept-algebra: For all x, y ∈ Z and R,R′ ∈ TReg,reg,

δT (∅, x) = ∅,
δT (ε, x) = ∅,
δT (x, y) = if x = y then ε else ∅,

δT (R|R′, x) = δT (R, x) | δT (R′, x),

δT (R ·R′, x) = δT (R, x) ·R′ | if finalT (R) then δT (R′, x) else ∅,
δT (star(R), x) = δT (R, x) · star(R),

finalT (∅) = False,

finalT (ε) = True,

finalT (x) = False,

finalT (R|R′) = finalT (R) ∨ finalT (R′),

finalT (R · R′) = finalT (R) ∧ finalT (R′),

finalT (star (R)) = True.

The derivate parser:

TReg,reg × Z∗
(δ∗)T

>TReg,reg
finalT

>Bool

20 of 26

Moreover, the unique Reg↓BA-homomorphism

foldLang(BA) : TReg(BA)→ Lang(BA)

is Accept↓BA-homomorphic.

Hence foldLang(BA) agrees with the unique Accept↓BA-homomorphism

unfoldTReg(BA) : TReg(BA)→ Lang(BA).

Hence the derivative parser is correct, i.e., for all R ∈ TReg(BA) and w ∈ Z∗,

parseT (R,w) = True ⇐⇒ w ∈ L(R) = foldLang(BA)(R),

and

the greatest Accept-congruence on TReg(BA), kernel(unfoldTReg(BA)), agrees with
kernel(foldLang(BA)) and thus is a Reg-congruence

and

the least Reg-invariant of Lang(BA), image(foldLang(BA)), agrees with
image(unfoldTReg(BA)) and thus is an Accept-invariant.

21 of 26

�
�

�

Context-free grammars are systems of Reg-equations

Let X be an S-sorted set of variables. An S-sorted function

E : X → TΣ(X)

is called a system of recursive Σ-equations.

E is ideal if for all x ∈ X E(x) 6∈ X .

Let A be a Σ-algebra. E induces the step function

EA : AX → AX

f 7→ λx.E(x)A(f)

Fixpoints of EA coincide with solutions of E in A.

22 of 26

Let G = (S,Z, P,BΣ, BG) be a context-free grammar. We add the base sorts as reg-
constants to Reg. The Reg-algebra Lang interprets s : ε→ reg by BGs.

G can be represented as an ideal system of recursive Reg-equations:

E(G) : S \BS → TReg(S \BS)

s 7→
∑

s→ϕ∈P ϕ

β : S \BS → Lang

s 7→ L(G)s

is the least solution of E(G) in Lang.

If G is non-left-recursive (s 6→+
G sw), then there is exactly one solution of E(G)

in Lang.

Is used for proving that a given language coincides with L(G).

23 of 26

�
�

�

Extending the derivative parser to parsers for CFGs

Let RΣ be the union of Reg, Accept, the sort word, S as additional reg-constants and
the following function symbols:

parse : reg word→ Bool

δ∗ : reg word→ reg

[] : ε→ word

_ : _ : symbol word→ word

reduce : reg → reg

ite : Bool reg reg → reg

eq, in : symbol symbol→ symbol

∨,∧ : Bool Bool→ Bool

The parser is a set Red of rewrite rules between RΣ-terms over the set X = {R,R′, w, x}
of variables:

parse(R,w) → final(δ∗(R,w))

δ∗(R, x : w) → δ∗(reduce(δ(R, x)), w)

δ∗(R, []) → R

δ(∅, x) → ∅
δ(ε, x) → ∅

24 of 26

δ(a, x) → ite(eq(a, x), ε, ∅) for all a ∈ Z \ BA

δ(s, x) → ite(x in A, ε, ∅) for all s ∈ BS
δ(s, x) → δ(E(G)(s), x) for all s ∈ S \BS

δ(R|R′, x) → δ(R, x) | δ(R′, x)

δ(R ·R′, x) → δ(R, x) ·R′ | ite(final(R), δ(R′, x), ∅)
δ(star(R), x) → δ(R, x) · star(R)

final(∅) → False

final(ε) → True

final(a) → False for all a ∈ BS ∪ Z \ BA

final(s) → final(E (G)(s)) for all s ∈ S \BS
final(R|R′) → final(R) ∨ final(R′)

final(R · R′) → final(R) ∧ final(R′)

final(star (R)) → True

ite(True, R,R′) → R

ite(False, R,R′) → R′

eq(x, x) → True

eq(a, b) → False for all a, b ∈ Z with a 6= b

a in s → True for all s ∈ BS and a ∈ BAs

a in s → False for all s ∈ BS and a ∈ Z \ BAs

25 of 26

Let A be an RΣ-algebra. A rewrite rule t→ u is correct w.r.t. A if tA = uA.

We extend Lang to an RΣ-algebra by defining for all s ∈ S:

sLang =def

{
BGs if s ∈ BS,
L(G)s = foldLang(E(G)(s)) otherwise,

and interpreting the above function symbols in the obvious way.

All rewrite rules of Red are correct w.r.t. Lang.

If G is non-left-recursive, then the parser given by Red is correct, i.e., for all
s ∈ N \BS und w ∈ Z∗,

parse(s, w)
+−→Red

{
True if u ∈ L(G)s,

False otherwise.
.

26 of 26

	Road map
	Signatures
	Fixpoints
	Co/Induction
	CFGs
	Derivative parser
	CFGs as equations
	Parsers for CFGs

